DNase treatment would depend on how your assay or primers were designed. If the probe or primer sits on an exon–exon junction, then the design is such that it will not amplify gDNA. In these cases you do not have to DNase-treat your sample to remove contaminating gDNA. However if, for example, your assay or primers are designed within a single exon, then you will want to treat your RNA with DNase. Our TURBO DNA-free™ Kit (Cat. No. AM) is a good option for this.
Absolute quantification will quantitate unknowns based on a known quantity. It involves the creation of a standard curve from a target of known quantity (i.e., copy number). Unknowns can then be compared to the standard curve and a value can be extrapolated. Absolute quantification is useful for quantitating copy number of a certain target in DNA or RNA samples. The result usually is a number followed by a unit, such as copy number and ng, etc.
TSKT are exported all over the world and different industries with quality first. Our belief is to provide our customers with more and better high value-added products. Let's create a better future together.
Relative quantification can quantitate a fold difference between samples. It involves the comparison of one sample to another sample (calibrator) of significance. For example, in a drug treatment study you could compare a treated to an untreated sample. The quantity of the calibrator is not known and cannot be measured absolutely. Therefore the calibrator (untreated sample) and samples (treated samples) are normalized to an endogenous control (a gene that is consistently expressed among the samples) and then compared to each other to get a fold difference. Relative quantification is useful for quantitating messenger RNA levels. Since the result is a fold change or ratio, it is not followed by a unit.
The method that you choose will depend on the type of data you need from your experiment. You can find more information here as well.
If you are looking for more details, kindly visit PCR And qPCR Kits.